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LElTER TO THE EDITOR 

The quantum open system as a model of the heat engine? 

Robert Alicki 
Institute of Physics, Gdansk University, 80-952 Gdansk, Poland 

Received 9 January 1979 

Abstract. The quantum open system weakly coupled to thermal reservoirs at different 
temperatures and under the influence of slowly varying external conditions is studied. The 
famous Carnot inequality for the efficiency of any heat engine is obtained. 

1. Introduction 

Recent studies on the entropy balance in quantum open systems (Alicki 1976, 
McAdory and Schieve 1977, Spohn 1978, Spohn and Lebowitz 1979, Alicki 1979a) 
give in some cases a rigorous and elegant explanation of the fundamental laws of 
phenomenological non-equilibrium thermodynamics. 

In order to further these studies we modify the model of an open system by 
introducing the influence of varying external conditions. 

We investigate the quanfum open system Yweakly interacting with N independent 
thermal reservoirs, the initial states of which are KMS states at inverse temperatures 
{&}. We may also assume a weak interaction with 'conservative' reservoirs without 
exchange of the energy which describes the dissipation processes in an open system, 
such as, for example, heat conduction (Davies 1978). 

We denote by Ho the free Hamiltonian of the open system, and in order to avoid the 
difficulties with unbounded operators we assume the Hilbert space X of Y to be 
finite-dimensional. Under certain technical conditions the dynamics of the system in 
the weak-coupling limit exists and is Markovian (Davies 1974, 1976). Then for the 
open system weakly interacting with the reservoirs-or equivalently if the relaxation 
times of the reservoirs are much shorter than the relaxation time of an open system-we 
can approximate the exact dynamics by the completely positive dynamical semigroup 
(Gorini and Kossakowski 1976, Lindblad 1976, Davies 1976) governed by the follow- 
ing master equation in the Schrodinger picture: 

Here 

In AHn describes the energy shift due to the interaction with the reservoirs, and L k ( K )  
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is a dissipative generator arising from the interaction of Y with a (conservative) heat 
reservoir. 

The general forms of AH, and L k  are given in the literature (e.g. Davies 1974, 
Kossakowski et a1 1977, Spohn 1978), and K is studied by Davies (1978) (see also 
Alicki 1979b). 

We present here only some relevant properties of Lk and K. 
(i) The generators Lk and K depend functionally on Ho. 

(ii) LkpBk = 0, k = 1,2,  . . . , N, where pBk = 2-' exp(-pkHo). 
(iii) K is self-dual, i.e. 

tr{(Kp)AI = trb(K-41 
for all p E L ' ( X ) ,  A E a(%'). 
Hamiltonian Ho. 

(iv) Kd(Ho)  = 0, where d ( H o )  is an abelian subalgebra of 9 ( X )  generated by the 

To describe the possibility of such an open system performing mechanical work we 
introduce the family of self-adjoint operators {hr; t s 0) acting on X. This represents a 
change in the external conditions, e.g. switching on some external fields or moving the 
walls confining the space accessible to the system (Pusz and Woronowicz 1978). We 
assume that these external conditions change very slowly in comparison with the 
relaxation time of the reservoir, TR. Therefore in every time interval A t  = tl - r, A t  s T~ 

such that hr, is almost constant (t' E [t, t l ] ) ,  the arguments used in the derivation of the 
Markovian master equaton (1.1) are valid, and we obtain 

N 

k = l  
i-'[Ho+hr, . ]+  1 (1.3) 

where Lf,  and K' are calculated by the substitution of No+ h, for the free Hamiltonian 
Ho (see property (i)). For simplicity we also include in Lf,  and K the Hamiltonian parts 
i-'[AH;, . 1. This does not change the properties (i)-(iv). 

It follows that for slowly varying external conditions we can use the following master 
equation : 

Because for every t S O ,  2 ( t )  is a generator of a completely positive dynamical 
semigroup, the time evolution described by (1.4) is given by the family {A,,, t > s 5 0) of 
linear, trace-preserving maps on L'(%') with the completely positive dual maps { A t ,  t s 
s 3 0). We have explicitly 

A , ,  = T exp( [ s r 2 ( r ' )  dt'), (1.5) 

where T stands for the time ordering, and therefore 

2. The principles of thermodynamics 

Thermodynamics is based on two fundamental laws-the first law of thermodynamics 
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or the law of conservation of energy, and the second law or entropy law (de Groot and 
Mazur 1969). 

The first principle has the following form 

d E  = d W +dQ (2.1) 

where E is the energy of the system, W is the work done by external forces, and Q is the 
heat supplied to the system by its surroundings. 

The microscopic scheme for the description of this law is as follows. One can define 

E( t )  =: tr(p(t)(Ho+ h,)} (2.2) 

(2.3) 

(2.4) 

and hence (2.1) is obviously fulfilled. Formula (2.4) was introduced by Pusz and 
Woronowicz (1978) in general C*-algebraic context. 

For the system defined in Q 1 the heat Q(r) can be represented as a sum of heat 
portions supplied by individual reservoirs: 

According to the principles of thermodynamics one can introduce for any open system a 
state function S, the entropy of the system. 

d S  = deS + diS 

The variation of the entropy dS  may be written as the sum of two terms 

(2.7) 

where d.S is the entropy supplied to the system by its surroundings, and diS is the 
entropy produced inside the system. 

The second law of thermodynamics states that 

diS 3 0. (2.8) 
One can explain this principle on microscopic grounds in some special cases of open 
systems (Alicki 1976, McAdory and Schieve 1977, Spohn 1978, Spohn and Lebowitz 
1979, Frigerio and Spohn 1979, Alicki 1979a) using the Gibbs-von Neumann form of 
entropy 

S ( p )  = - t rb  In p }  

and the results of Lindblad (1975). 

flow per unit time interval: 
For the case of the system defined in 8 1 we start with 

(2.9) 

the definition of the entropy 

N 

k = l  
J s =  1 J f  (2.10) 

(2.11) 
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Then the entropy production can be defined by 

u(t) =dS(p)/dt - J s .  

Theorem 1 The entropy production u(f) can be written in the form 

and moreover 

a(t) 3 0,  V p ( t ) ,  t 3 0. 

(2.12) 

(2.13) 

(2.14) 

Proof The formulae (2.13) and (2.14) can be easily obtaine- using (1.4), the equality 

(2.15) dS(p)/dt = -tr{(dp/dt) In p} 

and the inequality 

-tr{(9p)(ln p -In p o ) }  3 0 (2.16) 

where 9 is the generator of a completely positive semigroup, and moreover 9 p o  = 0, 
po>O (see Spohn 1978, Spohn and Lebowitz 1979, Frigerio and Spohn 1979, Alicki 
1 979 a). 

3. The heat engine model 

We consider the model described in 0 1 with two thermal reservoirs at the temperatures 
T1 L T2. We assume that the external conditions are changed in such a way that this 
open system becomes a heat engine working periodically with period to, i.e. we must 
assume the following conditions of macroscopic periodicity: 

ho = h,= 0 (3.1) 

Sb(0)I = Sb(toH. (3.3) 

t r b  ( O W O }  = t r b  (t0)HOI (3.2) 

Following (2.4), (1.4), (2.3) and (3.1), (3.2) the mechanical work performed by an open 
system per cycle is equal to 

- W(td = -Ioro tr{p(r) 21 dt = loro tr($Ho+h,) dt = Q l ( t o ) + Q 2 ( t 0 ) .  

Taking into account (3.3), (2.12), (2.14) and (2.11) we have 

and therefore 

P i Q i ( t o ) + P z Q z ( t o ) ~  0. 

(3.4) 

The formulae (3.4) and (3.5) are well known in phenomenological thermodynamics and 
for instance lead to the famous Carnot inequality for the efficiency 77 of any heat engine: 

(3.7) 77 = - W(to)/Qi(to) =S (Ti - T2)/ Ti .  
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The similar result for two non-interacting systems in KMS states was obtained by Pusz 
and Woronowicz (1978) without introducing the intermediate open system but using 
only the changing external conditions {ht} .  

The model studied in the present Letter seems to be closer to physical reality. 
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